

La química se erige sobre la idea de elementos y sus combinaciones. Acompáñennos a desarrollar esta idea clave a partir de observaciones y razonamientos sencillos pero profundos.
Analizamos con experimentos algunas propiedades fundamentales de los imanes (como la ubicación y características de sus polos y los tipos de interacciones que producen) y luego comparamos y contrastamos los fenómenos magnéticos y electrostáticos. Constatamos que se trata de fenómenos distintos y separados, con similitudes superficiales pero sin conexiones importantes.
A pesar de que ambos reciben el calificativo de “eléctricos”, los fenómenos asociados a la carga y a la corriente son tan diferentes que bien podríamos preguntarnos qué es lo que tienen en común. En esta clase exploramos esta conexión y proveemos la evidencia empírica de que la corriente resulta de cargas en movimiento. De ahí los nombres “electrostática” y “electrodinámica”.
Este es uno de los fenómenos que más ha impactado nuestra vida cotidiana a través de numerosos dispositivos como el motor eléctrico o el electroimán. Al mismo tiempo pone en evidencia la sutil relación entre magnetismo y electricidad: una carga en movimiento induce la aparición de efectos magnéticos.
Finalmente el círculo se cierra: así como cargas en movimiento producen efectos magnéticos, imanes en movimiento producen corrientes eléctricas. Estudiamos aquí la inducción electromagnética descubierta por Michael Faraday.
Biólogo, docente, divulgador. Expedición Ciencia. Buenos Aires.
La química se erige sobre la idea de elementos y sus combinaciones. Acompáñennos a desarrollar esta idea clave a partir de observaciones y razonamientos sencillos pero profundos.
Exploramos el rozamiento, la resistencia del aire y por qué las cosas no se hunden en el piso al estudiar cómo se combinan varias fuerzas al actuar sobre un solo objeto.
Proponemos investigar el fenómeno del calor, con experiencias simples y análisis de tablas y gráficos, para comprender los efectos de la contaminación térmica.
Te propongo mirar el interior de la célula como lo hicieron los primeros descubridores de las organelas. Exploremos fotos de células reales en busca de estructuras reconocibles e interpretemos experimentos para deducir las funciones de cada una.
¿Cuáles son los componentes de una dieta? ¿Por qué son tan importantes las proteínas? ¿Cómo funciona el sistema digestivo? ¿Para qué comemos y cómo podemos comer mejor?
Te cuento cómo analizamos la circulación de la materia y el flujo de energía en los ambientes naturales mediante casos concretos y actuales. En los ecosistemas nada se pierde, todo se transforma.
La física nos sirve para entender el mundo a nuestro alrededor, en este caso, la electricidad de nuestros celulares y hogares. Usemos gráficos y tablas de datos para sacarle provecho a nuestros dispositivos.
¿Cómo se clasifican los seres vivos? ¿Siempre se ordenaron de la misma manera? ¿Cómo se identifica una especie? Resolvemos estas y otras actividades con lápiz y papel, papers, imágenes y videos.
Hacemos clasificaciones de especies y evaluamos un modelo teórico: el árbol de la vida. Para contrastarlo, nos sumergimos en un caso de estudio intrigante: ¿los cetáceos son peces o mamíferos?
Analicemos movimientos de objetos reales y versiones idealizadas para desarrollar ideas, herramientas matemáticas y gráficas potentes para estudiar el movimiento y el cambio en general.
¡La clase entra en calor! Te contamos cómo hicimos para trabajar uno de los conceptos centrales de la física con la realización de experiencias simples y el análisis de tablas y gráficos.
Exploramos los conceptos de aceleración y velocidad instantánea, el fenómeno de caída libre y las astucias de Galileo. Un recorrido altamente conceptual por un tema central.
Te invitamos a investigar los mecanismos de la herencia en el maíz que permitieron generar variedades con mejores características para su producción y la explosión de su rendimiento agrícola en el siglo pasado. ¡Vamos a convertirnos en genetistas mejoradores de cultivos!
¿Cómo se generó la enorme diversidad de organismos que conocemos? Analizamos una idea central en biología, la evolución de las especies por selección natural, integrando herramientas de pensamiento, observaciones y experimentos reales.
Te invito a que te sumerjas con tus estudiantes en la escala microscópica. Estudiando cortes e imágenes de microscopio entendemos cómo diferentes tipos de células se conectan para formar tejidos y organismos completos.
El comportamiento de los cromosomas en la división celular, la generación de gametas y la fecundación, nos permiten comprender las leyes de Mendel de la herencia. Una verdadera saga científica.
Las relaciones entre los seres vivos que cohabitan en un ecosistema pueden influir en mucho más que sus propias poblaciones. Los equilibrios son inestables y dinámicos. ¿Cuáles son las respuestas si se altera un eslabón de la red?
¿Por qué algunas regiones del planeta son parecidas entre sí? ¿Cómo influye el clima en la biodiversidad? Abordamos el planeta como un sistema y analizamos las perturbaciones en los ambientes.
Te proponemos trabajar el tema de la comunicación entre células explorando sus manifestaciones en la salud humana y a través de recorridos históricos por la lógica de los experimentos clave.
Recorremos el universo de las plantas y ponemos la lupa de manera experimental sobre los procesos relacionados con la nutrición, la reproducción y la función de relación en los vegetales.
En esta secuencia vas a encontrar un montón de recursos variados para ir guiando a tus estudiantes a lo largo de la historia del origen de la vida en la Tierra, la evolución de los primeros seres vivos y la aparición de los distintos tipos celulares.
Muchas acciones de nuestro cuerpo no dependen de nuestra voluntad. El sistema nervioso autónomo gobierna estas respuestas y su fascinante regulación es clave para nuestra supervivencia.
Abordamos los cambios de estado tanto desde el punto de vista fenomenológico, haciendo experiencias y mediciones, como desde el modelo de partículas. Afianzamos así un pensamiento químico a la vez que manejamos herramientas matemáticas para analizar resultados experimentales.
Exploramos soluciones de sólidos, líquidos y gases en agua para descubrir que sus propiedades varían en un espectro que depende de las proporciones de las diferentes sustancias en ellas.
Un concepto de máxima importancia y, a la vez, escurridizo: abordamos la idea de “energía” desde los fenómenos de transformación y conservación y evitando las definiciones superficiales.
¿Cómo podemos hacer para identificar una sustancia desconocida? ¿Qué distingue una sustancia de otra? Con experimentos y ejemplos, entramos en una discusión a la vez práctica y filosófica.
La disolución no es infinita, las soluciones se saturan. Esta propiedad es reveladora y sumamente útil para separar mezclas y entender una multitud de fenómenos industriales, de salud y ambientales.
Simple, profundo y, muchas veces, difícil y contraintuitivo, el concepto de fuerza es uno de los más fértiles y formidables de la ciencia. Hacemos experimentos para arribar a la segunda ley de Newton.
Veamos cómo el cuerpo responde a condiciones externas e internas para regular su metabolismo, su desarrollo y su medio interno, y cómo las hormonas afectan diversos órganos para lograrlo.
Te proponemos trabajar el tema de la reproducción sexual con una mirada evolutiva, explorando las soluciones que la naturaleza ofrece al desafío del encuentro de los gametos.
El análisis de colisiones bien elegidas nos permiten descubrir por nosotros mismos una de las leyes más fundamentales de la naturaleza: la de la conservación de la cantidad de movimiento.
Con materiales fáciles de conseguir y experimentos muy sencillos para hacer en cualquier aula, esta secuencia nos invita a explorar las ideas básicas de circuitos simples: corriente, resistencia y voltaje, de manera muy conceptual y sin fórmulas ni cálculos.
Exploremos con sencillez y rigor y algunas experiencias las características macroscópicas de los tres estados de la materia: sólido, líquido y gaseoso. Ahondemos en un modelo simple de partículas Así, nos adentramos en los fenómenos macroscópicos y las ideas microscópicas que los explican.
Un viaje para entender el ADN, desde su descubrimiento y estructura al análisis de secuencias para dilucidar todo tipo de problemas científicos en casos policiales, crímenes de lesa humanidad, identificación de especies y diagnóstico de cáncer o el Covid-19.
¿Qué hacen las proteínas? Comprenderemos la relación entre la secuencia, la estructura y la función de estas protagonistas absolutas de todos los procesos biológicos.
Experimentos sencillísimos de atracción y repulsión con materiales muy comunes nos acercan paso a paso a una de las ideas más fundamentales de la física: la carga eléctrica y la naturaleza fundamentalmente eléctrica de toda la materia.
Te proponemos trabajar el tema de la reproducción a partir de observaciones de múltiples casos y aplicando la lógica científica para analizar las ventajas y las desventajas adaptativas de cada uno.
¿Cómo podemos saber si algo es una sustancia pura o una mezcla de sustancias? ¿Cómo se analiza de qué está hecho algo? Exploremos las primeras ideas que surgen en el viaje analítico al que nos invita la química.
El cerebro y la médula espinal reciben información de los nervios y gobiernan las respuestas de los músculos y otros órganos. Descubramos, cual detectives de casos y experimentos, cómo lo sabemos.
¡Las ondas nos rodean! Con experimentos sencillos, vamos a adentrarnos en los fenómenos ondulatorios para entender a fondo los fundamentos de este tipo de movimiento, encontrar nuevas formas de saltar la soga, y hacer sonar una guitarra sin siquiera tocarla.
Adentrémonos en el mundo de las mutaciones, el fenómeno detrás del cáncer y de múltiples enfermedades genéticas, pero también en la base de toda la (gigantesca) biodiversidad del planeta.
¿Por qué nos agitamos y nuestro corazón late más fuerte cuando hacemos actividad física? ¿Para qué respiramos? ¿Qué función cumplen los latidos? ¿Por qué a la selección argentina no le resulta sencillo ganar en La Paz? En esta secuencia contestamos estas preguntas a través de recursos fenomenales.
Una de las grandes ideas de la ciencia: nuestro cerebro es una gran red de neuronas comunicándose eléctrica y químicamente. ¿Cómo funciona esto? ¿Cómo llegamos a saberlo?
De la mano de Dalton, Gay-Lussac y Avogadro exploramos el nacimiento de la teoría atómica, la idea de molécula y peso atómico relativo. Exploramos además cómo se forja y valida una teoría científica.
¡La vida es mucho más que animales y plantas! Un recorrido para descubrir algunos de los grupos de seres vivos que son “invisibles a los ojos”. Aunque no los veamos, los microorganismos siempre están.
Te propongo una introducción a las reacciones químicas poniendo el foco en un proceso cotidiano y fascinante: la combustión. A través de experiencias simples y del análisis de experimentos históricos llegaremos a las mismas conclusiones que aquellos que sentaron las bases de la química.
Veamos cómo la secuencia de ADN, a través del ARN mensajero, determina la secuencia de proteínas y de esa manera el perfil bioquímico de la célula. Exploremos cómo la expresión génica gobierna la diferenciación celular, y visitemos algunos experimentos históricos para pensar científicamente.
Imaginemos un mundo sin rozamiento y sin atracciones. Sigamos a Galileo mientras se aleja de las ideas de Aristóteles y de las explicaciones triviales para adentrarse en el mundo de la idealización científica.
Vamos a aprender cómo nuestro cuerpo nos protege contra infecciones gracias al sistema inmune y sus múltiples componentes, que se coordinan perfectamente para combatir a los patógenos y generar una memoria inmunológica.
Seguimos el curso de las investigaciones científicas que llevaron a comprender el cólera desde su epidemiología hasta la identificación del organismo que la causa.
Electricidad y magnetismo están unidos en el imaginario de la gente, pero rara vez conocemos las conexiones verdaderas entre ambos conjuntos de fenómenos. Esto genera confusiones y malentendidos. A nivel fenomenológico las conexiones no son complicadas de entender, pero no solemos detenemos a observarlas con cuidado. Es importante reconocer que a) las cargas eléctricas y los imanes son cosas diferentes sin interacción directa alguna, b) las corrientes eléctricas en los circuitos se deben al desplazamiento de cargas, c) las corrientes inducen fenómenos magnéticos, y d) los cambios en los entornos magnéticos inducen corrientes eléctricas. Esta es la verdadera conexión a nivel de los fenómenos y es todo lo que buscamos explorar en esta secuencia. Las explicaciones teóricas de estas conexiones no serán cubiertas, pero consideramos un avance significativo si los y las estudiantes se familiarizan con estos fenómenos en la base de tantas aplicaciones centrales a la sociedad industrializada.
learningEvidencePdf/DAI6wzEcykmiilb7tdXflrKJCYXqUHHGlfHudECr.pdf
Holton, G. J., & Brush, S. G. (1996). Introducción a los conceptos y teorías de las ciencias físicas. Reverté
Resnick, R., Halliday, D., & Krane, K. S. (2002). Física, Volumen II. Editorial Continental.